(32.5log3(12−3x))−(3log2x)>32 ⇒12−3x>0 and x>0
⇒x∈(0,4)
Therefore, the integral values are 1,2,3.
For x=1,
(32.5log39)−(3log21)=35−30>32
For x=2,
(32.5log36)−(3log22)=(65)1/2−31>32
We know that,
62−3>32∴(65)1/2−31>32
For x=3,
(32.5log33)−(3log23)=32.5−3log23<32
We know that,
33=27<32∴32.5−3log23<32
Hence, the required values are 1,2 and the required sum =3