The correct option is B 27
Let the odd integers be 2m+1,2m+3,2m+5, ... and let their number be n. Then
572−132=[n/2][2(2m+1)+(n−1)2]=n(2m+n)=2mn+n2⇒572−132=[n+m]2−m2
Hence , m=13 and n+m=57 or n=57−13=44
Therefore , the required odd integers are 27,29,31,...,113