Sum of terms of series will be
Explanation for the correct option :
Step-1 : Reforming the given series
Let be the sum of the first terms of the given series
i.e. , where is the term of the series. To find we shall rewrite the series as follows :
So, using the above pattern, we get .
Step-2 : Finding the value of
We have
Here, we have used the fact that the sum of the first terms a geometric series with the first term and common ratio is .
Hence, option (D) is the correct answer.