Sum of series 1+2+3+5+6+7+9+10+...+93+94+95+97+98+99 will be:
5050
3750
1350
4250
The explanation for the correct option (Option B):
Sum of first n integers is given by nn+12.
Let S be the value of 1+2+3+5+6+7+9+10+...+93+94+95+97+98+99.
⇒S=1+2+3+4+...+100-4+8+12+16+...+100[Rearrangingthetermsintotwoseries]⇒S=1+2+3+4+...+100-41+2+3+4+...+25⇒S=100×100+12-4×25×25+12⇒S=50×101-50×26⇒S=50×101-26⇒S=50×75⇒S=3750
Hence, the correct answer is option B.
Fill in the blanks with >,< or =
-4+-7____-4--7
Sum of n terms of series 12 + 16 + 24 + 40 +......... will be