Let the four numbers in A.P. be (a−3d),(a−d),(a+d),(a−3d).
Now, given that there sum is 20.
⇒a−3d+a−d+a+d+a+3d=20
⇒4a=20
⇒a=5
Also, sum of there squares is 120.
⇒(a−3d)2+(a−d)2+(a+d)2+(a+3d)2=120
⇒(a−3d)2+(a−3d)2+(a−d)2+(a+d)2=120
⇒2(a2+9d2)+2(a2+d2)=120
⇒4a2+20d2=120
⇒a2+5d2=30
⇒25+5d2=30
⇒d=±1
Since, common difference d is non negative, ⇒d=1
Hence, the numbers are 2,4,6,8.