wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Sum of terms;-
Sn=141.3+243.5+345.7+...........n terms

Open in App
Solution

Sn=1413+2435+3457+....n terms
Sn=nr=1r4(2r1)(2r+1)
Sn=nr=1r2(2r1)(2r+1)4+r24(2r1)(2r+1)
Sn=nr=1r24+r24(2r1)(2r+1)
Sn=nr=1r24+nr=1r24(2r1)(2r+1)
Sn=14nr=1r2+14nr=1r2(2r1)(2r+1)
Sn=14n(n+1)(2n+1)6+14nr=1r2(2r1)(2r+1)
Sn=n(n+1)(2n+1)24+14nr=1(2r1)(2r+1)4+14(2r1)(2r+1)
Sn=n(n+1)(2n+1)24+14nr=114+14nr=114(2r1)(2r+1)
Sn=n(n+1)(2n+1)24+n16+116nr=1(2r+1)(2r1)2(2r1)(2r+1)
Sn=n(n+1)(2n+1)24+n16+132nr=1(12r112r+1)
Sn=n(n+1)(2n+1)24+n16+132(1112n+1)
Sn=n(n+1)(2n+1)24+n16+132132(2n+1)
Sn=n(n+1)(2n+1)24+n16+132132(2n+1)


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE by Completing the Square
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon