Let side of square 1 be xmetres.
Perimeter of square1=4×side=4x
Given: Difference of perimeter of squares=24
4x−Perimeter of square 2=24
⇒Perimeter of square 2=4x−24
⇒4× side of square 2=4x−24
side of square 2=4(x−6)4=x−6
Hence, side of square1 is x and side of square2 is x−6
Given: Sum of area of square=468m2
⇒ Area of square1+Area of square2=468m2
⇒x2+(x−6)2=468
⇒x2+x2−12x+36−468=0
⇒2x2−12x−432=0
or x2−6x−216=0 is of the form ax2+bx+c=0 where a=1,b=−6,c=−216
D=b2−4ac=(−6)2−4×1×−216=900
So, the roots are x=−b±√D2a=−(−6)±√9002=6±302=18,−12
Since x is the side of the square and xcannot be negative.
So, x=18 is the solution.
∴ Side of square1=x=18m
Side of square 2=x−6=18−6=12m