Sum of the series ∑nr=1(r2+1)r! is ______
∑nr=1(r2+1)r!
⇒∑nr=1(r2+1+2r−2r)r!
⇒∑nr=1((r+1)2.r!−2r.r!)
⇒∑nr=1((r+1).(r+1)!−2r.r!)
⇒∑nr=1[(r+2−1)(r+1)!−2((r+1−1)r!)]
⇒∑nr=1[(r+2)(r+1)!−(r+1)!−2((r+1)r!−r!)]
⇒∑nr=1[(r+2)!−(r+1)!−2.(r+1)!+2.r!)]
T1=3!−2!−2.2!+2.1!
T2=4!−3!−2.3!+2.2!
T3=5!−4!−2.4!+2.3!
.
.
.
.
.
.
.
Tn=(n+2)!−(n+1)!−2.(n+1)!+2.n!
−−−−−−−−−−−−−−−−−−−
Sum=Sn=(n+2)!−2!−2(n+1)!+2.1!
Sn=(n+2)!−2(n+1)!−2+2
Sn=(n+1)![n+2−2]
Sn=n.(n+1)!
Correct answer is C