∑10r=0cos3πr3=
−92
−72
−98
−18
LetI=∑10r=0cos3(πr3)⇒14∑10r=0(cosπr+3cosπr3)I1=14∑10r=0cosπrI1=14[cos0+cosπ+cos2π+cos3π+..........+cos10π]=14[1−1+1−1+1........1+1]=14. I2={cos(102.π3)sin11π6sinπ6}3.14∴I2=−38∴I1+I2=14−38=−18
The value of 10∑r=0 cos3 πr3 is equal to