Tn of
1,4,7,...=1+(n−1)3=1+3n−3=3n−2 where
a=1 and
d=4−1=3Tn of 4,7,10...=4+(n−1)3=4+3n−3=3n+1 where a=3 and d=7−4=3
Tn of 7,10,13...=7+(n−1)3=7+3n−3=3n+4 where a=7 and d=10−7=3
∴Tn=16[1(3n−2)(3n+1)(3n+4)]
Sn=16(3n+4)−(3n−2)(3n−2)(3n+1)(3n+4)
=16[1(3n−2)(3n+1)−1(3n+1)(3n+4)]
We have Sn=∑Tr
=16∑nr=1[1(3n−2)(3n+1)−1(3n+1)(3n+4)]
=16[11.4−14.7+14.7−17.10+....−1(3n+1)(3n+4)]
∴Sn=16[14−1(3n+1)(3n+4)]
=16[(3n+1)(3n+4)−44(3n+1)(3n+4)]
=9n2+12n+3n+4−424(3n+1)(3n+4)