Sum the following series to n terms : 3+5+9+15+23+....
We have, 3+5+9+15+23+....+Tn−1+TnSn=3+5+9+15+23+Tn−1+Tn...(i)Also, Sn=3+5+9+15...Tn−1+Tn...(i)Subtracting (ii) from (i),we get0=3+[2+4+6+8...(Tn−Tn−1)]−TnTn=3+(n−1)2[2×2+(n−1−1)×2]Tn=3+(n−1)2×2[2+n−2]=3+(n−1)(n)=3+n2−n=n2−n+3∴Sn=∑hk−1Tk=∑hk−1(k2−k+3)=∑hk−1k2−∑hk−1k+∑hk−13=n(n+1)(2n+1)6−n(n+1)2+3n=n(n+1)(2n+1)−3n(n+1)+18n6=n6[(n+1)(2n+1)−3(n+1)+18]=n6[2n2+n+2n+1−3n−3+18]=n6[2n2+3n−3n−2+18]=n6[2n2+16]=n6×2[n2+8]=n3(n2+8)Hence,Sn=n2(n2+8)