Sn=13⋅4⋅5+24⋅5⋅6+35⋅6⋅7+……+n(n+2)(n+3)(n+4)
Tn=n(n+2)(n+3)(n+4)=n+2−2(n+2)(n+3)(n+4)=1(n+3)(n+4)−2(n+2)(n+3)(n+4)
S1=n∑n=11(n+3)(n+4),S2=n∑n=12(n+2)(n+3)(n+4)
S1=14⋅5+15⋅6+16⋅7+……+1(n+3)(n+4)
S1=5−44⋅5+6−55⋅6+7−66⋅7+……+(n+4)−(n+3)(n+3)(n+4)
S1=14−15+15−16+16−17+……+1n+3−1n+4
S1=14−1n+4=n4(n+4)
S2=23⋅4⋅5+24⋅5⋅6+25⋅6⋅7+……+2(n+2)(n+3)(n+4)
S2=5−33⋅4⋅5+6−44⋅5⋅6+7−55⋅6⋅7+……+(n+4)−(n+2)(n+2)(n+3)(n+4)
S2=13⋅4−14⋅5+14⋅5−15⋅6+15⋅6−16⋅7+……+1(n+2)(n+3)−1(n+3)(n+4)
S2=13⋅4−1(n+3)(n+4)=n4(n+4)
Sn=S1−S2=14−1n+4−13⋅4+1(n+3)(n+4)=16−1n+3+2(n+3)(n+4)
S∞=limn→∞Sn=16