wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Sum the following series to n terms and to infinity 13.4.5+24.5.6+35.6.7+....

Open in App
Solution

Sn=1345+2456+3567++n(n+2)(n+3)(n+4)

Tn=n(n+2)(n+3)(n+4)=n+22(n+2)(n+3)(n+4)=1(n+3)(n+4)2(n+2)(n+3)(n+4)


S1=nn=11(n+3)(n+4),S2=nn=12(n+2)(n+3)(n+4)

S1=145+156+167++1(n+3)(n+4)

S1=5445+6556+7667++(n+4)(n+3)(n+3)(n+4)

S1=1415+1516+1617++1n+31n+4

S1=141n+4=n4(n+4)


S2=2345+2456+2567++2(n+2)(n+3)(n+4)

S2=53345+64456+75567++(n+4)(n+2)(n+2)(n+3)(n+4)

S2=134145+145156+156167++1(n+2)(n+3)1(n+3)(n+4)

S2=1341(n+3)(n+4)=n4(n+4)


Sn=S1S2=141n+4134+1(n+3)(n+4)=161n+3+2(n+3)(n+4)

S=limnSn=16

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Geometric Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon