Sum the series 1.2.3+2.3.4.+3.4.5+⋯ to n terms.
We have
Tk=((kth term of 1,2,3⋯)×(kth term of 2,3,4,⋯)×(kth term of 3,4,5,⋯)={1+(k−1)×1}+{2+(k−1)×1}×{3+(k−1)×1}=k(k+1)(k+2)=(k3+3k2+2k).∴Sn=∑nk=1Tk=∑nk=1(k3+3k2+2k)=∑nk=1k3+3∑nk=1k2+2∑k=1nk=14n2(n+1)2+3.16n(n+1)(2n+1)+2.12n(n+1){∵∑nk=1k3={12n(n+1)}2,∑nk=1k2=16n(n+1)(2n+1),∑nk=1k=12n(n+1)}=14n(n+1){n(n+1)+2(2n+1)+4}
Senior Secondary School Mathematics for Class 11
=14n(n+1)(n2+5n+6)=14n(n+1)(n+2)(n+3).Hence, the required sum is14n(n+1)(n+2)(n+3).