We have, tn=n4(2n−1)(2n+1)
=n24+116+116(4n2−1)=4n2+116+132[12n−1−12n+1]
∴Sn=n∑n=1tn=n∑n=14n2+116+132n∑n=1[12n−1−12n+1]
=14n(n+1)(2n+1)6+116n+132[1−13+13−15+...+12n−1−12n+1]
=n48(4n2+6n+5)+132(1−12n+1) =n(4n2+6n+5)48+132(1−12n+1)
=n(4n2+6n+5)48+n16(2n+1)