Sum to n terms of the series 1(1+x)(1+2x)+1(1+2x)(1+3x)+1(1+3x)(1+4x)+... is
A
nx(1+x)(1+nx)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
n(1+x)[1+(n+1)x]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x(1+x)(1+(n−1)x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
nx(1+x)[1+(n+2)x]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cn(1+x)[1+(n+1)x] If tr denotes the nth term of the series, then xtr=x(1+rx)(1+(r+1)x)=11+rx−11+(r+1)x ⇒x∑nr=1tr=∑nr=1[11+rx−11+(r+1)x]=11+x−11+(n+1)x=nx(1+x)(1+(n+1)x) ⇒∑nr=1tr=n(1+x)[1+(n+1)x]