Sum to n terms of the series 1(1+x)(1+2x)+1(1+2x)(1+3x)+1(1+3x)(1+4x)+...
Open in App
Solution
Let Tr be the general term of the series Tr=1(1+rx)(1+(r+1)x) So Tr=1x[(1+(r+1)x)−(1+rx)(1+rx)(1+(r+1)x)]=1x[1rx−11+(r+1)x] Tr=f(r)−f(r+1) ∴S=∑Tr=T1+T2+T3+...+Tn =1x[11+x−11+(n+1)x]=n(1+x)[1+(n+1)x]