Sum to n terms the series 12−22+32−42+52−62+.........
Open in App
Solution
S=(12−22)+(32−42)+(52−62)... Let T1=12−22 T2=32−42 Hence Tn=(2n−1)2−(2n)2 Writing the general term, we get (2n−1)2−(2n)2 =4n2−4n+1−4n2 =1−4n Hence ∑(1−4n) =n−2(n)(n+1) =n(1−2n−2) =−n(2n+1).