If we denote the series by u1+u2+u3+.....+un,
we have u1=1x(11+x−11+2x),
u2=1x(11+2x−11+3x),
u3=1x(11+3x−11+4x),
__________________________________________
un=1x(11+nx−11+¯¯¯¯¯¯¯¯¯¯¯¯¯n+1⋅x),
Thus by adding, Sn=1x(11+x−11+¯¯¯¯¯¯¯¯¯¯¯¯¯n+1⋅x)
=n(1+x)(1+¯¯¯¯¯¯¯¯¯¯¯¯¯n+1⋅x).