Sum upto n terms of the series yn=1+(1+x)+(1+x+x2)+(1+x+x2+x3)+⋯+(1+x+x2+⋯+xn) is true for n∈N, then yn is
n1−x−x(1−xn)(1−x)2
nth term of yn=1+x+x2+⋯xn=1−xn1−x
yn=n∑i=11−xi1−x
yn=1−x1−x+1−x21−x+1−x31−x+⋯+1−xn1−x
=(1+1+1+⋯n)−(x+x2+⋯⋯+xn)1−x
=n1−x−x(1−xn)(1−x)2
Alternate solution : if series is true for n∈N is also true for n=1,2,3,⋯
(a) For n=1,yn=n1−x−x(1−xn)(1−x)2=11−x−x(1−x)(1−x)2=1
(b) For n=1,11−x+x(1−x)(1−x)2≠1
(c) For n=1,11−x+x(1+x)(1−x)2≠1
(d) For n=1,−11−x+x(1−x)(1−x)2≠1