Suppose A and B are two 3×3 non-singular matrices such that (AB)k=AkBk
fork=2008,2009,2010, then
(AB)2010=A2010.B2010
A.B.(AB)2009=A2010.B2010
A−1.A.B.(AB)2009=A−1.A.A2009.B2010
B.(AB)2009=A2009.B2010
B.A2009.B2009=A2009.B2010
B.A.A2008.B2008.B=A2009.B2009B
B.A.A2008.B2008.B.B−1=A2009.B2009.B.B−1
B.A.(AB)2008=(AB)2009
=A.B.(AB)2008
B.A.(AB)2008((AB)2008)−1=A.B.(AB)2008((AB)2008)−1
⇒B.A=A.B−(C) option
We know A.B−1=A.B−1
A.B−1.A−1=A.B−1.A−1 (∵(AB)−1=B−1.A−1)
=A.(AB)−1
=A.(BA)−1 (∵BA=AB)
=A.A−1.B−1
=B−1
∴A.B−1.A−1=B−1−(A) option
A−2.B2.A2=(A.B.A−1)2 [∵(ABC)n=Cn.Bn.An]
A.B=B.A
A−1.A.B=A−1.B.A
B=A−1.B.A
B.A−1=A−1.B−(1)
So as AB=BA
A.B.A−1=B.A.A−1
=B
=B.A−1.A
=A−1B.A [∵BA−1=A−1B] from (1)
So A−2.B2.A2=(A.B.A−1)2=(A−1.B.A)2