wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Suppose A and B are two 3×3 non-singular matrices such that (AB)k=AkBk
fork=2008,2009,2010, then

A
AB1A1=B1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A1B2A=B2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
AB=BA
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
A2B2A2=(A1BA)2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A AB1A1=B1
C AB=BA
D A2B2A2=(A1BA)2

(AB)2010=A2010.B2010

A.B.(AB)2009=A2010.B2010

A1.A.B.(AB)2009=A1.A.A2009.B2010

B.(AB)2009=A2009.B2010

B.A2009.B2009=A2009.B2010

B.A.A2008.B2008.B=A2009.B2009B

B.A.A2008.B2008.B.B1=A2009.B2009.B.B1

B.A.(AB)2008=(AB)2009

=A.B.(AB)2008

B.A.(AB)2008((AB)2008)1=A.B.(AB)2008((AB)2008)1

B.A=A.B(C) option

We know A.B1=A.B1

A.B1.A1=A.B1.A1 ((AB)1=B1.A1)
=A.(AB)1
=A.(BA)1 (BA=AB)
=A.A1.B1
=B1
A.B1.A1=B1(A) option
A2.B2.A2=(A.B.A1)2 [(ABC)n=Cn.Bn.An]
A.B=B.A

A1.A.B=A1.B.A
B=A1.B.A
B.A1=A1.B(1)
So as AB=BA

A.B.A1=B.A.A1
=B

=B.A1.A

=A1B.A [BA1=A1B] from (1)

So A2.B2.A2=(A.B.A1)2=(A1.B.A)2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon