Suppose a and b are two roots of the equation x2−(α−4)x+α=0. Find out the maximum possible value of 5ab−a2−b2.
Soln:
a and b are the roots of the equation
a+b=(α−4),ab=α
5ab−a2−b2
5ab−(a2+b2)
5ab−[(a+b)2−2ab]
5α−[(α−4)2−2α]
5α−[α2−10α+16]
−α2+15α−16=−(α2+15α−16)=−(α2+16α−α−16)=−[α(α+16)−1(α+16)]=−(α+16)(α−1)
So,the maximum value =D4a=[152−4(−1)(−16)]4×1=1614.Hence option (c).