a,b,c are three roots of the quadratic equation
(4f(−1)−3)x2+(4f(1)−3))x+f(2)=0⇒4f(−1)=3,4f(1)=3andf(2)=0.
Let f(x)=(x−2)(Ax+B)
Now, 3=4f(−1)=4(−3)(−A+B)⇒A−B=1/4
3=4f(−1)=4(−1)(A+B)⇒A+B=−3/4
∴A=−1/4,B=−2/4
Thus, f(x)=14(4−x)2.
The graph of y=f(x) is given in Fig.
A) x coordinates of points of intersection of y=f(x) when the x-axis are ±2.
B) Area32=2∫−214(4−x2)dx=38(2)[4x−x23]]20=4
C) Maximum value of f(x) is 1
D) Length of intercept on the x-axis is 4.