Suppose a,b,c are three distinct real numbers. Let
P(x)=(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)+(x−a)(x−b)(c−a)(c−b).
When simplified, P(x) becomes
P(x)=(x−b)(x−c)(a−b)(a−c)+(x−c)(x−a)(b−c)(b−a)+(x−a)(x−b)(c−z)(c−b)P(a)=(a−b)(a−c)(a−b)(a−c)+(a−c)(a−a)(b−c)(b−a)+(a−a)(a−b)(c−z)(c−b)P(a)=1+0+0=1P(b)=0+1+0=1P(c)=0+0+1=1
Option (B),(C),(D) does not satisfy any one the condtions
∴P(x)=1
So option (A) is correct