In given figure ABCD is a trapezium,
⇒ Join AC and BD. Extent AB and draw a line through C parallel to DA meeting AB produced at E.
⇒ AB∥DC ----- ( 1 ) [Given]
⇒ and AD∥CE ---- ( 2 ) [Construction]
∴ ADCE is a parallelogram [Opposite pairs of sides are parallel]
⇒ ∠A + ∠E = 180∘ --- ( 3 ) [Consecutive interior angles]
⇒ ∠B + ∠CBE = 180∘ ---( 4 ) [Linear pair]
⇒ AD = CE ------ ( 5 ) [Opposite sides of a parallelogram.]
⇒ AD = BC ------ ( 6 ) [Given]
⇒ BC = CE [From ( 5 ) and ( 6 )]
⇒ ∠E = ∠CBE ---- ( 7 ) [Angles opposite to equal sides]
∴ ∠B + ∠E = 180∘ --- ( 8 ) [From (4) and (7)]
Now from (3) and (8) we have,
⇒ ∠A + ∠E = ∠B + ∠E
∴ ∠A=∠B [Proved]
⇒ ∠A + ∠ D = 180∘
⇒ ∠B + ∠C = 180∘
⇒ ∠A + ∠D = ∠B + ∠C [∵ ∠A = ∠B]
∴ ∠C=∠D [Proved]