The correct option is D 5
Let I=∫1−7cos2xsin7xcos2xdx
⇒I=∫sec2xsin7xdx−7∫1sin7xdx
⇒I=I1−I2
Now, I1=∫(1sin7x)1stsec2x2nd dx
Using integration by parts
I1=tanxsin7x dx+7∫tanxsin8xcosx dx
⇒I1=tanxsin7x+I2
∴I1−I2=tan xsin7x+C, where C is constant of integration.
Hence, g(x)=tanx
So, g′(x)=sec2x and g′′(x)=2sec2xtan x
∴g′(0)=1 and g′′(π4)=4
Hence, g′(0)+g′′(π4)=1+4=5
Alternatively :
We have ∫1−7cos2xsin7xcos2xdx=g(x)sin7x+C
Differentiating both sides with respect to x, we get
1−7cos2xsin7xcos2x=(sin7x)g′(x)−g(x)(7sin6xcosx)sin14x
⇒sec2x−7=g′(x)−7g(x)cotx, which is possible when g(x)=tanx
So, g′(x)=sec2x and g′′(x)=2sec2xtan x
∴g′(0)=1 and g′′(π4)=4
Hence, g′(0)+g′′(π4)=1+4=5