Suppose earth's orbital motion around the sun supposed to be in circular is suddenly stopped, what time will the earth take to fall into the sun?
Kepler's law applies to planetary orbits, whether they be of circular, or elliptical shape. It says that T22T12=R23R13 where T is the period of an orbit and R is its semi-major axis. The semi-major axis is the average of the planet's maximum and minimum distances from the sun.
Let the earth's mean radius be R1..This straight fall can be considered 1/2 of a degenerate elliptical orbit with major axis equal to R1. Its semi-major axis is R12 (the average of R1 and zero). Its period will be designated T2.
So: T22T21=(R12)3R31=(12)3
And therefore, T2=0.353 year, and the time to fall into the sun is the time to fall into the sun is ,64.52 days