Suppose f(x) and g(x) are two continuous functions defined for 0≤x≤1.
Given f(x)=∫10ex+t.f(t) dt and g(x)=∫10ex+t.g(t) dt+x.
The value of g(0)-f(0) equals
23−e2
g(x)=ex∫10et.g(t) dt+x
g(x)=Bex+x ...(2) ⇒g(t)=Bet+t
where B=∫10etg(t)dt; B=∫10et(Bet+t)dt; B=B∫10e2tdt+∫10et.tdt
but ∫e2tdt=12(e2−1) and ∫10t.et.dt=1
∴B=B2(e2−1)+1⇒2B=B(e2−1)+2⇒3B=Be2+2⇒B=23−e2
∴ from (2)
g(x)=(23−e2)ex+x;
g(0)=23−e2