Suppose f(x) and g(x) are two continuous functions defined for 0≤x≤1.
Given f(x)=∫10ex+t.f(t) dt and g(x)=∫10ex+t.g(t) dt+x.
The value of f(1) equals
0
⎛⎝f(x)=ex∫10et.f(t) dtA say⎞⎠
f(x)= A ex ...(1) ⇒f(t)=Aet
where, A=∫10et.f(t)dt⇒A=∫10.Aetdt; A=A∫10e2tdt
now A[∫10e2tdt−1]=0⇒A=0 as ∫10e2tdt≠0
Hence f(x)=0⇒f(1)=0