The correct option is B 12
Given : f(x)=ax+b and g(x)=bx+a
f(g(x))=a(bx+a)+b⇒f(g(x))=abx+a2+bg(f(x))=b(ax+b)+a⇒g(f(x))=abx+b2+a⇒f(g(x))−g(f(x))=abx+a2+b−(abx+b2+a)f(g(50))−g(f(50))=a2−b2+b−a⇒(a−b)(a+b−1)=28
∴(a−b)(a+b−1)=1×28 or 2×14 or 4×7
(i) Let a−b=1,a+b−1=28∴a=15,b=14=ab=210
If we consider the other case by interchanging the values, i.e
a−b=28,a+b−1=1 we wont be getting a,b as positive integers.
(ii) Let a−b=2,a+b−1=14
Not possible as a,b are positive integers
(iii) Let a−b=4,a+b−1=7∴a=6,b=2⇒ab=12
If we consider the other case by interchanging the values, i.e
a−b=7,a+b−1=4 we wont be getting a,b as positive integers.