Applying R3→R3−R1−2R2
we get f′(x)=∣∣
∣∣2ax2ax−a2ax+b+1bb+1−1001∣∣
∣∣
=∣∣∣2ax2ax−1bb+1∣∣∣=∣∣∣2ax−1b1∣∣∣ [Using C2→C2−C1]
⇒f′(x)=2ax+b
Integrating, we get f(x)=ax2+bx+c where c is an arbitrary constant.
Since, f has a maximum at x=5/2
f′(5/2)=0⇒5a+b=0
Also f(0)=2⇒c=2
Ans f(1)=1⇒a+b+c=1
∴a+b=1
Solving (1) and (2) for a,b we get, a=1/4,b=−5/4
Thus f(x)=14x2−54x+2