Step 1: Limit at x=1
Here, limit exists at x→1
i.e., L.H.L.=R.H.L.=f(1)=4 ⋯(i)
L.H.L.=limx→1−f(x)=limh→0f(1−h)
⇒L.H.L.=limh→0a+b(1−h)
⇒L.H.L.=a+b(1−0)
⇒L.H.L.=a+b ⋯(ii)
Step 2: Solve equations for value of a and b
Given, limx→1f(x)=f(1)
⇒limx→1−f(x)=limx→1+f(x)=f(1)
⇒a+b=b−a=4
From (ii) and (iii)
∴a+b=4 ⋯(iv)
b−a=4 ⋯(v)
Adding equation (iv) and (v)
⇒a+b+b−a=4+4
⇒2b=8⇒b=4
Also, a+b=4
⇒a+4=4
⇒a=0