Suppose f(x) = ⎧⎪⎨⎪⎩a+bxx<14x=1and ifb−axx>1
limx→1=f(1),
what are possible values of a and b?
Here f(x) = ⎧⎪⎨⎪⎩a+bxx<14x=1b−axx>1
Also limx→1 f(x) = f(1)
⇒limx→1−f(x)=limx→1+ f(x) = f(1) =4
⇒limx→1−f(x)=4 and limx→1+ f(x) = 4 ...(i)
Now limx→1−f(x)=limx→1− (a+bx)
Put x = 1- h as x→1,h→0
∴limh→0[a+b(1−h)]=limh→0 [a+b-bh] = a+b ...(ii)
Also limx→1+f(x)=limx→1+ (b-ax)
Put x =1 + h ax x→1,h→0
∴limh→0[b−a(1+h)]=limh→0 [b-a-ah] = b-a ...(iii)
Putting values from (ii) and (iii) in(i)
∴ a+b= 4 and -a + b =4
Solving these equations, we have
a = 0 and b=4.