Suppose J =∫sin2x+sinx1+sinx+cosxdx and K=∫cos2x+cosx1+sinx+cosxdx. If C is an arbitrary constant of integration then which of the following is correct?
A
J=12(x−sinx+cosx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
J=K−(sinx+cosx)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
J=x+K+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
K=12(x−sinx+cosx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is BJ=K−(sinx+cosx)+C J=∫sin2x+sinx1+sinx+cosx Put, u=tan(x2)⇒du=12sec2x2dx J=∫2(4u2(u2+1)2+2uu2+1)(u2+1)(2uu2+1+1−u2u2+1+1)du =2∫(u−1(u2+1)2+1u2+1)du=2tan−1u+2∫u−1(u2+1)2du In the integral, put u=tant⇒du=⇒sec2tdt ∴J=2tan−1u+2∫cos2t(tant−1)dt=2tan−1u+2∫(1−sin2t)(tant−1)=2tan−1u−cos(tan−1u)2−sin(tan−1u)cos(tan−1u)=12(x−sinx−cosx) K=∫cos2x+cosx1+cosx+sinxdx Put u=tanx2⇒du=12sec2x2dx K=−∫2(u−1)u2+2u2+1du Put u=tant⇒du=sec2tdt ∴K=−∫cos2t(tant−1)dt=tan−1u+cos(tan−1u)2+sin(tan−1u)cos(tan−1u)∴J=K−(sinx+cosx)+c