Suppose logab+logba=c. The smallest possible integer value of c for all a,b>1 is.
logab+logba=c
Let logab=x
x=logblogalogba=logalogb=1x
Using A.M≥G.M, we have
x+1x2≥x×1xx+1x≥2
⇒logab+logba≥2
∴c≥2
Suppose 3k × b2 = 64 for some positive integers k, b. Find all possible values of k + b.