Suppose p denotes the perimeter of a triangle with sides a, b and c and s is the semi perimeter. If A denotes the area of the triangle, √p(p−2a)(p−2b)(p−2c)A =
We know that Area = √s(s−a)(s−b)(s−c)
s = a+b+c2
A = √(a+b+c2)((a+b+c2−a)(a+b+c2−b)(a+b+c2−c)
A = √(a+b+c2)(a+b+c−2a2)(a+b+c−2b2)(a+b+c−2c2)
=14√(a+b+c)((a+b+c)−2a)((a+b+c)−2b)((a+b+c)−2c
A = 14(√p(p−2a)(p−2b)(p−2c))
∴ √p(p−2a)(p−2b)(p−2c)A = 4