Suppose p denotes the perimeter of a triangle with sides a, b and c and s is the semi perimeter. If A denotes the area of the triangle, √p(p−2a)(p−2b)(p−2c)A =
We know that Area = √s(s−a)(s−b)(s−c)
A = √(a+b+c2)(a+b−c2)(a−b+c2)(−a+b+c2)
A = 14(√(a+b+c)(a+b−c)(a−b+c)(−a+b+c))
A = 14(√(a+b+c)((a+b+c)−2c)((a+b+c)−2b)((a+b+c)−2a))
A = 14(√p(p−2a)(p−2b)(p−2c))
∴ √p(p−2a)(p−2b)(p−2c)A = 4