Suppose sin3sin3x=∑nm=0Cmcosnx is an identity in x,
Where C0,C1,…Cn are constants and Cn≠0. Then the value of n is___
Open in App
Solution
Given sin3sin3x=∑nm=0Cmcosnx is an identity in x,
Where C0,C1,…Cn are constants . sin3xsin3x=14{3sinx−sin3x}.sin3x =14(32.2sinx.sin3x−sin23x)=14{32(cos2x−cosx)−12(1−cos6x)}=18(cos6x+3cos2x−3cosx−1) ∴ On comparing both sides, we get n=6