The correct option is D 16−8√3
S1:(x−4)2+y2=8⇒x2+y2−8x+8=0
Let P(a,b) be any point on S1.
Then tangent at P(a,b) to S1 is T=0
i.e., ax+by−82(x+a)+8=0
⇒ax+by−4x−4a+8=0
Above tangent is normal to x2+(y−4)2=4, so it will pass through (0,4), so we get
b−a+2=0 …(1)
Also, P(a,b) lies on circle S1
⇒a2+b2−8a+8=0 …(2)
Solving (1) and (2), we get
(a,b)=(3+√3,1+√3)
or (a,b)=(3−√3,1−√3)
⇒a2+b2=16±8√3