Here, the equation of the parabola is,
y=ax2+bx+c, where a>0 and a+b+c is an integer
Vertex is at (14,−98)
The equation of the parabola can be expressed as,
y=a(x−14)2−98
Expand the above equation.
y=a(x2−x2+116)−98
y=ax2−ax2+a16−98
From the above result and the equation given in the question, we have
a=a
b=−a2
c=a16−98
Add all the above results.
a+b+c=9a−1816
Since, a+b+c is an integer, 9a−18 must be divisible by 16.
Let 9a=z. Now, if
z−18≡0(mod16)
Then,
z≡2(mod16)
Therefore, if
9a=2
a=29=pq
Therefore,
p+q=2+9=11
Hence, this is the required result.