f(2)−f(1)2−1=f‘(c1)∀c1ϵ(1,2)
f(2)−2 ≤2 ∵f′(x)≤2⇒f(2)≤4 ..........(1)
Similarly applying LMVT in [2,4]
f(4)−f(2)4−2=f‘(c2)∀c2ϵ(2,4)
8−f(2)2≤2⇒f(2)≥4
From (1) & (2) f(2)=4