f(x)=x3−3x2−4x+12h(x)={f(x)x−3x≠3Kx=3
f(x)=(x−2)(x+2)(x−3)
So roots off(x)=2,−2,3
h(x)={(x−2)(x+2)x≠3Kx=3
limx→3h(x)=5=K
So, K=5
h(x) is even
Find the value of k, so that the function f(x) is continuous at the indicated point
f(x)=√3−tanxπ−3x=k at
x=π3
Identify polynomials in the following :
(i) f(x) = 4x3 − x2 - 3x + 7
(ii) g(x) = 2x3−3x2+√x−1
(iii) p(x) = 27x2−74x+9
(iv) q(x) = 2x2−3x+4x+2
(v) h(x) = x4−x32+x−1
(vi) f(x) = 2 +3x+4x