Suppose that on the interval [−2,4] the function f is differentiable, f(2)=1 and |f(x)| ≤ 5. Find the bounding function of f on [−2,4], using LMVT.
Let xϵ[−2,4] Consider the interval [−2,x] By LMVT
f(x)−f(−2)x−(−2)=f(c),c∈(−2,4)
⇒−5≤f(x)−1x+2≤5{∴|f(x)|≤5}
∴−5x−10≤f(x)−1≤5x+10
−5x−9≤f(x)≤5x+11.