Suppose that the three quadratic equations ax2−2bx+c=0, bx2−2cx+a=0 and cx2−2ax+b=0 all have only positive roots. Then,
All the options are correct.
Given: ax2−2bx+c=0...(i), bx2−2cx+a=0...(ii) and cx2−2ax+b=0...(iii) all have positive roots only.
Product of roots >0, therefore,
⇒ca>0, ab>0, bc>0
⇒a,b,c have same sign.
Also, Discriminant D=B2−4AC≥0 when roots are positive for standard quadratic equation Ax2+Bx+C=0.
Therefore,
⇒4b2−4ac≥0 for equation (iv)
⇒4c2−4ab≥0 for equation (v)
⇒4a2−4cb≥0 for equation (vi)
Adding (iv),(v) and (vi), we get,
⇒(4b2−4ac)+(4c2−4ab)+(4a2−4cb)≥0
⇒(b2+a2+c2)−ac−ab−cb≥0
⇒12[(a−b)2+(b−c)2+(c−a)2]≥0
⇒(a−b)2+(b−c)2+(c−a)2=0
⇒(a−b)2=0,(b−c)2=0 and (c−a)2=0
⇒a=b=c
Also, from (iv),(v) and (vi), we get,
⇒b2=ac,c2=ab,a2=cb