Suppose the entire system of the previous question is kept inside an elevator which is coming down with an acceleration a< g. Repeat parts (a) and (b).
R1+ma−mg=0
⇒R1=m(g−a)=mg−ma
Again F−T−μR1=0⇒T−μR1=0⇒F−[μ(mg−ma)]−μ(mg−ma)=0
⇒T=μ(mg−ma)⇒F−μmg−μma−μmg+μma=0⇒F=2μmg−2μma=2μm(g−a)
(b) Let acceleration of the blocks be a1
R1=mg−ma
and 2F=T−μR1−ma1−ma1=0⇒2F=T−μR1+Ma1NowT=μR1+Ma1T=μR1−Ma1=0=μ(mg−ma)+Ma1=μmg−μma+Ma1
Substracting the value of F and T1 we get, 2[2μm(g−a)−2(μmg−μma+Ma1)−μmg+μma−ma1=0⇒4μmg−4μma−2μma=ma1+Ma1⇒a1=2μm(g−a)M+M
Both blocks move with this accelelration but, in opposite directions.