∣∣|x−a|−b∣∣=2008
⇒|x−a|=b±2008
Case 1: If b<2008,
then |x−a|=b−2008 has no real root since b−2008<0 and |x−a|=b+2008 has atmost 2 real roots.
Case 2: If b>2008,
then both |x−a|=b−2008 and |x−a|=b+2008 has 2 real roots, which gives 4 distinct real roots a±(b−2008) and a±(b+2008) since a+b+2008>a+b−2008>a−b+2008>a−b−2008
Case 3: If b=2008,
then |x−a|=b−2008=0 has only 1 real root x=a,
and |x−a|=b+2008=4016 has 2 real roots x=a±4016
Hence, b=2008
∴b502=2008502=4