The correct option is
B tan−1219Given Parabola:
(y−k)2=4(x−h).............(i)Vertex A:(h,k)
Focus S:(1+h,k)
Passes through O(0,0) =>(0+k)2=4(0−h)
=>k2=−4h...............(ii)
Also Passes through ∠(0,2)=>(2−k)2=4(0−h).................(iii)
From (ii)and(iii), k2=k2+4−4k
=>k=1 and h=−14...................(iv)
End point of ∠R:(1−14,1±2),D:(34,3)and(34,−1)
Axis of parabola: y−k=0=>y=1............(v)
Point of intersection of y=1 with y−axis ie. x=0 is P:(0,1)
Line Passing through PD:(y−1)=(3−134)(x−0)
:y=83x+1
Slope of PD, m=83......................(vi)
Line Passing through AD, (y−1)=(3−134+14)(x+14)
=>y=2x+12+1
Slope of AD=m2=2..........(vii)
Angle between AD and PD=>∠PDA=tan−1∣∣
∣
∣
∣∣83−21+83(2)∣∣
∣
∣
∣∣
∠PDA=tan−1∣∣
∣
∣
∣∣23193∣∣
∣
∣
∣∣
∠PDA=tan−1(219).