The correct option is C 7
P(x)=ax2+bx+c=0α+β+αβ=−ba+ca=c−ba...(1)Since a,b & c are in A.P.,⇒a+c=2b⇒c−b=b−a⇒α+β+αβ=ba−1Let ba=z, an integer⇒b=azc=2b−a=a(2z−1)⇒P(x)=ax2+azx+a(2z−1)=a[x2+zx+(2z−1)]D=z2−8z+4, is a perfect squareLet D=(z−4)2−12=m2,m∈I⇒(z−4+m)(z−4−m)=12[12=12×1, 6×2 or 4×3]
But for (12,1) and (4,3), z will not be an integer.
⇒z−4+m=6 & z−4−m=2⇒z=8⇒α+β+αβ=ba−1=8−1=7