wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Suppose, X has a binomial distribution B(6,12). Show that X=3 is the most likely outcome.

Open in App
Solution

X is the random variable whose binomial distribution is B(6,12).

Therefore, n=6 and p=12 and q=1p=112=12

Then, P(X=r)= 6Cr(12)r(12)6r

Here, P(X=0) = 6C0p0q6=6C0(12)6=126=664

P(X=1) = 6C1p1q5=6(12)(12)5=6(126)=664

P(X=2) = 6C2p2q4=6×51×2(12)2(12)4=1564

P(X=3) = 6C3p3q3=6×5×41×2×3(12)3=(12)3=2064

P(X=4) = 6C4p4q2=6C2(12)4(12)2=1564

P(X=5) = 6C5p5q1=6C1(12)5(12)1=664

and P(X=6) = 6C6p5q0=1×(12)6=164

It is clear that 2064 is maximum of all the above values. This means that X=3 is the most likely outcome.


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon