The correct option is D π
As √b(a+b+c)ca×√c(a+b+c)ab=a+b+ca>1
tan−1√b(a+b+c)ca+tan−1√c(a+b+c)ab=tan−1⎛⎜
⎜
⎜
⎜
⎜
⎜⎝√b(a+b+c)ca+√c(a+b+c)ab1−√b(a+b+c)ca×√c(a+b+c)ab⎞⎟
⎟
⎟
⎟
⎟
⎟⎠+π=−tan−1√a(a+b+c)bc+π=0⇒tan−1√a(a+b+c)bc+tan−1√b(a+b+c)ca+tan−1√c(a+b+c)ab=π