wiz-icon
MyQuestionIcon
MyQuestionIcon
5
You visited us 5 times! Enjoying our articles? Unlock Full Access!
Question

tan133(x5y5)31(x5+y5)=3π4[d2ydx2+dydx],atx=1is

Open in App
Solution

tan133(x5y5)31(x5+y5)=3π4
33(x5y5)31(x5+y5)=tan3π4
33(x5y5)31(x5+y5)=1
33(x5y5)=31(x5+y5)
33x533y5=31x531y5
33x5+31x5=33y531y5
64x5=2y5
y5=32x5
Differentiating both sides w.r.t x we get
5y4dydx=160x4
y4dydx=32x4 .......(1)
[dydx]x=1=[32x4y4]x=1=32y4
Differentiating (1) both sides w.r.t x we get
4y3(dydx)2+y4d2ydx2=128x3
4y3(dydx)2+y4d2ydx2=128x3 at x=1
4y3(32y4)2+y4d2ydx2=128
y4d2ydx2=1284y3(32y4)2
y4d2ydx2=1284y3×1,024y8
y4d2ydx2=1284,096y5
d2ydx2=128y54,096y9
d2ydx2+dydx=128y54,096y9+32y4
Again when x=1y5=32x5=32
y=2
d2ydx2+dydx=128×254,09629+3224
d2ydx2+dydx=128×254,09629+3224
d2ydx2+dydx=40964,09629+2=0+2=2
Hence d2ydx2+dydx=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Formation of Differential Equation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon